African Development Bank and IFPRI publish report on the status of agri-biotechnology in Africa

Agricultural biotechnology has been used to address constraints in agriculture and has the potential to make a major contribution to the overall goal of sustainable intensification.

The adoption of agricultural biotechnology, and specifically genetically modified (GM) crops, by many African countries has been quite limited to date, however.

To further inform the debate over agricultural biotechnology, a report by the International Food Policy Research Institute (IFPRI) and the African Development Bank collects current information on the status of biotechnology in Africa—with an emphasis on GM crops—and assesses the opportunities offered by and constraints on adoption.

The authors provide information about the region’s limited financial, technical, regulatory, and legal capacities while additionally focusing on the role of trade concerns and conflicting information as limiting factors that affect adoption.

The authors also identify several initiatives that could help overcome these obstacles, such as increasing public investments in agricultural biotechnology research and development; improving regulatory frameworks and regulatory capacity; and developing an effective and broad-based communications strategy.

These and other recommendations should be useful to policymakers, development specialists, and others who are concerned about the potential role that biotechnology could play in Africa as an additional tool for sustainable agriculture development.

Access the report, GM agricultural technologies for Africa: A state of affairs


CTA announces 2013 international conference on ICTs in agriculture

CIAT Kisumu 13
A maize farmer in Kisumu, Kenya who has signed up to receive text messages from the CIAT-led Africa Soil Information Service (AfSIS). The messages provide vital information on crop management, including planting times and fertiliser application. PHOTO: Neil Palmer (CIAT).

If you are interested in the use of ICTs for agricultural development then mark this date!

From 4 to 8 November 2013, the Technical Centre for Agricultural and Rural Cooperation (CTA) hosts its 2013 international conference in Kigali, Rwanda. The theme of the conference is  ICT4A: Creating the Digital Springboard for 21st Century Agriculture. The conference focuses on the use of ICTs in agriculture with particular emphasis on value chains, advocacy and policy development.

Find out more from the conference website,, where you can also sign up to receive a monthly conference newsletter/update.

Science communication: bridging the research-information gap between scientists and the public

Scientists carry out research for the benefit of society at large. The communication of scientific research results has traditionally been restricted to publishing articles in peer-reviewed journals or presenting findings at scientific conferences. These media tend to lock out the general public, either because members of the public lack access to scientific journals or they simply cannot sift through the technical jargon to understand the basics of the scientists’ messages.

Because scientific research is often supported by taxpayers’ funds, the public has a right to be informed about the work that scientists are doing. This is especially so for controversial scientific issues, such as genetic modification of food crops, or research on global health concerns such as HIV/AIDS and malaria. Young African scientists are often not trained in science communication and thus lack the necessary expertise to tailor their highly technical messages to suit a variety of general audiences. This has resulted in an information gap between scientists and the public.

Following the growth of the Internet age and the increasing visibility of science in local and regional mass media, several platforms have arisen for the communication of science to general audiences. This [fairly long] post explores some of the challenges that young African scientists encounter in communicating science and, drawing on examples from the eastern Africa region, identifies some opportunities that may help these scientists to effectively bridge the information divide that exists between them and the public.

What is science communication?

A universally accepted standard definition of the term “science communication” is difficult to come by. However, in this context we may loosely define science communication as the use of various media to share scientific information that has been adapted to specific audiences in order to increase knowledge, enhance awareness, or influence changes in attitude or behaviour. As with other forms of communication, maintaining the accuracy of the message is critical to successful science communication.

According to the South African Agency for Science and Technology Advancement (SAASTA), science communication is about dialogue, engagement, respect for audience and context, science and how it matters to society, and scientists as key actors. Science communication also involves making science a part of everyday life, bridging the gap between science and society and making science accessible to non-scientists (SAASTA, 2007).

Traditionally, the primary channel for scientists to communicate the findings of their research work is through scientific journals articles. Despite the fact that this channel specifically targets a limited audience comprising mainly professionals, the scientific journal still has an important role to play as a form of research quality control through the peer-review system so that scientists can uphold their professional credibility as well as the credibility of their research.

However, the journal article should not be seen as the be-all and end-all. Rather, it should be seen as an objective, reliable basis for reaching out to other less-specialized audiences who cannot access scientific journals or who may find it difficult to understand the highly technical language contained in the typical scientific journal article. Such general audiences may be better placed to make practical use of the knowledge emerging from the scientist’s published work.

The scientist’s wider audiences may include academicians from other disciplines, governments, policymakers, donors/funding organizations, industry stakeholders, the media, non-governmental organizations (NGOs), students, members of parliament and individual stakeholders from among the general public (farmers, consumers, etc.). Consequently, the media used to communicate science to these general audiences are wide-ranging and include the following: policy briefs, public forums, newspaper articles, TV feature documentaries, radio interviews, science exhibitions, etc.

Why do we need science communication?

Effective sharing of scientific information is especially necessary in today’s world because scientific information is now more accessible and visible to the general public, thanks to the Internet era that has revolutionized the sharing of information.  Several platforms for sharing of information have also developed rapidly and people are more interested in how they can use scientific information to improve their lives.

Science communication is a useful tool not only in contributing to the body of scientific knowledge but also in raising public awareness and understanding of science. As a bridge between science and society, science communication is important because the public has needs to understand how scientific discoveries and innovations impact their lives; such knowledge will help members of the public to make informed decisions.

Communicating of science is also useful for linking research and policy. Science communication provides policymakers with credible, objective evidence on which to base their policy decisions. Policymakers rarely have time to study detailed research reports and yet they are expected to make policy decisions on the basis of research findings. By summarizing the key research findings in form of a policy brief, a scientist can ensure that policymakers receive scientific information in a form that is readily understandable and useable.

Science communication can also be used to stimulate public debate and allows for an informed public to make rational, informed choices on controversial issues touching on science and technology that directly affect the general public. A good example is the ongoing debate on whether Africa as a whole should adopt commercial production of genetically modified food crops despite the existence of a grey area regarding the biosafety and environmental impacts of GMOs.

Additionally, by reaching out to schools and using innovative and fun ways to share the wonders of science, scientists can stimulate pupils’ interest in science and technology research and thus help to nurture the next generation of scientists.

Elements of effective science communication

Credibility: The research information should be valid and credible. Publishing in peer-reviewed journals offers scientists a reliable anchor for their professional research credibility.

Objectivity: Science communication should be based on robust and objective scientific research data.

Simplicity: The message should be clear, simple and readily understood without loss of accuracy. Scientists should be prepared to explain or clarify any points of uncertainty or controversy.

Honesty: Scientists should honestly acknowledge any existing gaps in scientific knowledge and not seek to provide answers that the research data do not explicitly present.

Audience-focused: Messages should be suitably packaged to suit the audience, taking into account the audience’s knowledge base and the desired outcome of the communication.

Human interest element: Science communication should answer the audience’s question “Why is this important to me?” The audience needs to appreciate the value of the message at a personal level.

Obstacles to effective science communication

Africa as a whole is in need of effective science communication in order to enhance the development of science and technology and, ultimately, sustainable economic development for the continent. Several challenges and obstacles stand in the way of this goal; these can be loosely grouped as obstacles relating to awareness, access, capacity and institutions.

Obstacles related to awareness

  • Lack of awareness on available science communication resources, networks etc.
  • Low level of awareness by scientists on why they should communicate their research to general audiences
  • Lack of knowledge on senior scientists who can mentor young scientists in science communication
  • Widely varying levels of science literacy among the public
  • Lack of understanding on how the media works

Obstacles related to access

  • Unreliable internet connectivity (low speeds, intermittent connection etc.) hinders efficient electronic communication
  • Few open access journals thus literature review is hampered
  • Individual or institutional journal subscriptions not always affordable

Obstacles related to capacity

  • Highly specialized technical and analytical skills not matched by skills and expertise in science communication
  • Specialized advanced degree courses in science communication are not offered in universities in the eastern and central Africa region
  • Science communication courses available abroad may not be affordable
  • Poor scientific writing skills resulting in low rates of publication in high-impact peer-reviewed journals
  • Lack of training on how to handle press interviews  on TV or radio

Obstacles related to institutions

  • Institutional bureaucracy and red tape: young scientists may be viewed as too junior to communicate with media; institutional policy may keep the young scientist out of media limelight despite playing a key role in the research.
  • Weak linkages between scientists and the media; this can lead to scientists’ fear that the media will distort the scientific message
  • Relatively lower media profile given to science compared, for example, to politics or sports

Opportunities to bridge the research information gap

Online resources

  • The Science and Development Network (SciDev.Net) is a free access website that provides news and information on science and technology for the developing world. SciDev.Net hosts an electronic guide (e-guide) to science communication which has helpful resources on communicating science to general audiences, dealing with the media, interacting with policymakers etc. Links to other online tools and resources are also available.

Linkages with networks of science communicators

  • Media for Environment, Science, Health and Agriculture (MESHA) in Kenya is an association of communicators who are specialized in science, environment, agriculture, health, technology and development. This network aims to improve science journalism in Kenya and the region by promoting the development of environment, health, technology and agriculture communication through interactions between journalists and scientists. MESHA currently has about 50 members drawn from the eastern Africa region.
  • The Research and Media Network is an online social network of journalists, scientists, press officers and others who communicate about research in sectors such as science, health, environment, agriculture, water, energy, development, poverty, sustainability and communications. The network aims at bringing people together to improve communication of research findings. With over 800 members in 95 countries so far, this network offers a useful platform for creation of linkages and sharing of ideas, information and expertise between scientists and professional science communicators.

Media platforms (examples from Kenya)

  • Daily Nation newspaper: For several years, Kenya’s leading daily newspaper — the Daily Nation — carried a weekly science magazine called Horizon in the Thursday issue of the paper. Although the coverage was relatively limited (usually 4 pages or so), it was a useful platform for news and feature stories on science, health and the environment. Sadly, this magazine is no longer featured after the newspaper re-aligned its editorial content some months back. (This is one of the challenges science editors face, I guess, where the business objective of maximizing sales determines what topics get the most coverage… and in most of Africa, politicians invariably get priority coverage over science topics).
  • The Standard newspaper: Second to the Daily Nation in readership, the Standard features a weekly science column called Panorama which, like Horizon, is a 4-page magazine carrying short news stories and features, though most of the articles are reprinted from other sources like BBC. Perhaps a pointer to the dearth of qualified science journalists in our local media houses…
  • Television: Several Kenyan TV stations now run regular feature programmes on science, health and the environment, usually on weekly basis. However, the depth of coverage is often lacking. For instance, with all the hullabaloo and debate about GMOs, one would expect our TV stations to host a moderated live debate, bringing together the pro- and anti-GM lobbyists to state their case for or against the use of GM to breed for drought-resistant maize, for instance. Such an approach would help the public to benefit from informed debate, instead of the current ‘soft’ approach which involves a Q&A by the newscaster on the ‘usual’ topics (nutrition, diets…) which often sounds scripted.

Going forward…

It’s high time that research institutions and universities proactively supported the development of science communication by taking steps to go above and beyond merely publishing research results in peer-reviewed journals but also reaching out to general audiences and communicating the same in a language that they (the public) can readily understand.

Schools of journalism and institutes of mass communication should seek to revise their curricula to introduce courses on science communication tailored to meet local requirements. The same goes for undergraduate and masters courses in the life sciences; our universities need to empower science graduates to be able to effectively communicate their science to a wide variety of audiences using different channels, including social media tools.